

LAB MANUAL

FOR

INTELLIGENT SYSTEM

INDEX

1. Syllabus

2. Rational behind the INTELLIGENT SYSTEM lab

3. Hardware/Software Requirement

4. Practicals conducted in the lab

5. References

6. New ideas besides University Syllabus

7. FAQs

SYLLABUS

CSE-306-E
L T P Class Work: 25
- - 2 Exam: 25
 Total: 25
 Duration of Exam: 3 Hrs.

1. Study of PROLOG.

2. Write the following programs using PROLOG:

3. Write a program to solve 8-queens problem.

4. Solve any problem using depth first search.

5. Solve any problem using best first search.

6. Solve 8- puzzle problem using best first search.

7. Solve Robot (traversal) problem using means End Analysis.

8. Solve Traveling Salesman problem.

Note: At least 5 to 10 more exercises to be given by the teacher concerned.

RATIONALE BEHIND THE COVERAGE

This lab is basically suited for problems that involve OBJECTS – in particular,
STRUCTURED OBJECTS – and relations between them.

Prolog is a programming language centered around a small set of basic mechanisms,
including

• Pattern matching
• Tree based data structuring
• Automatic back tracking.

This small set constitutes a surprisingly powerful and flexible programming framework.

Constraint logic programming(CLP), usually implemented as a part prolog system .CLP
extends prolog with constraint processing which has proved in practice to be an
exceptionally flexible tool for problems like
SCHEDULING and LOGISTIC PLANNING

SOFTWARE REQUIREMENTS:

• Windows 98

• PROLOG

HARDWARE REQUIREMENTS:

• P-1 Processor

• 64 MB RAM

• 4 GB Hard Disk

LIST OF EXPERIMENTS

 Program 1
 OBJECTIVES: STUDY OF PROLOG

PROLOG-PROGRAMMING IN LOGIC

PROLOG stands for Programming In Logic – an idea that emerged in the early 1970’s to
use logic as programming language.The early developers of this idea included Robert
Kowalski at Edinburgh (on the theoretical side),Marrten van Emden at Edinburgh (
experimental demonstration) and Alian Colmerauer at Marseilles (implementation).
David D.H. Warren’s efficient implementation at Edinburgh in the mid -1970’s greatly
contributed to the popularity of PROLOG.

PROLOG is a programming language centered around a small set of basic mechanisms,
Including pattern matching, tree based data structuring and automatic backtracking. This
Small set constitutes a surprisingly powerful and flexible programming framework.
PROLOG is especially well suited for problems that involve objects- in particular,
structured objects- and relations between them.

SYMBOLIC LANGUAGE

PROLOG is a programming language for symbolic, non-numeric computation. It is
Especially well suited for solving problems that involve objects and relations between
objects.

For example, it is an easy exercise in prolog to express spatial relationship between
objects, such as the blue sphere is behind the green one. It is also easy to state a more
general rule: if object X is closer to the observer than object Y, and object Y is closer
than Z, then X must be closer than Z. PROLOG can reason about the spatial relationships
and their consistency with respect to the general rule. Features like this make PROLOG a
powerful language for Artificial Language(AI) and non- numerical programming.

There are well-known examples of symbolic computation whose implementation in other
standard languages took tens of pages of indigestible code. When the same algorithms
were implemented in PROLOG, the result was a crystal-clear program easily fitting on
one page.

FACTS, RULES AND QUERIES

Programming in PROLOG is accomplished by creating a database of facts and rules
about objects, their properties, and their relationships to other objects. Queries then can

be posed about the objects and valid conclusions will be determined and returned by the
program. Responses to user queries are determined through a form of inferencing control
known as resolution.

FOR EXAMPLE:

a) FACTS:
 Some facts about family relationships could be written as :

 sister(sue,bill)
 parent(ann,sam)
 male(jo)
 female(riya)

b)RULES:
 To represent the general rule for grandfather, we write:
 grandfather(X,Z)
 parent(X,Y)
 parent(Y,Z)
 male(X)

c)QUERIES:
 Given a database of facts and rules such as that above, we may make
 queries by typing after a query a symbol ‘?_’ statements such as:
 ?_ parent(X,sam)
 X=ann
 ?_grandfather(X,Y)
 X=jo, Y=sam

PROLOG IN DESIGINING EPERT SYSTEMS

An expert system is a set of programs that manipulates encoded knowledge to solve
problems in a specialized domain that normally requires human expertise. An expert
system’s knowledge is obtained from expert sources such as texts, journal articles,
databases etc. and encoded in a form suitable for the system to use in its inference or
reasoning processes. Once a sufficient body of expert knowledge has been acquired, it
must be encoded in some form, loaded into knowledge base, then tested, and refined
continually throughout the life of the system.

PROLOG serves as a powerful language in designing expert systems because of its
following features:

• Use of knowledge rather than data
• Modification of the knowledge base without recompilation

of the control programs.
• Capable of explaining conclusion.
• Symbolic computations resembling manipulations of

natural language.
• Reason with meta-knowledge.

META PROGRAMMING

A meta program is a program that takes other programs as data. Interpreters and
compilers are examples of meta-programs. Meta-interpreter is a particular kind of meta-
program: an interpreter for a language written in that language. So a PROLOG mete-
interpreter is an interpreter for PROLOG, itself written in PROLOG.
Due to its symbol- manipulation capabilities, PROLOG is a powerful language for meta-
programming. Therefore, it is often used as an implementation language for other
languages. PROLOG is particularly suitable as a language for rapid prototyping where
we are interested in implementing new ideas quickly. New ideas are rapidly implemented
and experimented with.

 Program 2

 OBJECTIVES:: PROGRAM TO SOLVE EIGHT QUEENS PROBLEM

FLOWCHART TO SOLVE EIGHT QUEENS PROBLEM

 START

Represent board position as
8*8 vector,[1,2,3,4,5,6,7,8]

Store the set of queen in the
list ‘Queen’

Calculate the permutation of the
above eight numbers stored in set P

Let the position where the first queen
to be placed be (1,Y),for second
be(2,Y1)and so on and store in S.

Is Yi-Y
<>Xdist?

Is Y-Y1
<>Xdist?

 Increment Xdist by 1.

Is
Queens
==[]?

Print S as answer

ALGORITHM TO SOLVE EIGHT QUEENS PROBLEM

Start
Step 1: Represent the board position as 8*8 vector, i.e., [1,2,3,4,5,6,7.8]. Store the set of
queens in the list ‘Queens’.

Step 2: Calculate the permutation of the above eight numbers stored in set P.

Step 3: Let the position where the first queen to be placed be(1,Y), for second be (2,Y1),
and so on and store the position in S.

Step 4: Check for the safety of the queens through the predicate, ‘noattack()’.

Step 5: Calculate Y1-y and Y-Y1. If both are not equal to Xdist, which is the X-distance
between the first queen and others, then goto step 6 else goto step 7.

Step 6: Increment Xdist by 1.

Step 7: Repeat above for the rest of the queens, until the end of the list is reached.

Step 8: Print S as answer.

Stop

Source code :

domains

H,F,I,Y,Y1,Xdist,Dist1,Queen=integer
T,L,L1,PL,PT,Queen,Others=integer*

predicates
safe(L)
solution(L)
permutation(L,L)
del(I,L,L)
noattack(I,L,L)

clauses
solution(Queens):-

permutation([1,2,3,4,5,6,7,8],Queens),
safe(Queens).

permutation([],[]).
permutation([H|T],PL):-

permutation(T,PT),
del(H,PT,PI).

del(I,[I|L],L).
del(I,[F|L,[F|L1]):-

 del(I,L,L1).
safe([]).
safe([Queen|Others]):-

safe(Others),
noattack(Queen,Others,1).

noattack(_,[],_).
noattack(Y,[Y1|Ylist],Xdist):-

Y1-Y<>Xdist,
Y-Y1<>Xdist,
Dist1=Xdist+1,
Noattack(Y,Ylist,Dist1).

OUTPUT:
Goal:
Solutions(s)

Program 3

 OBJECTIVES::PROGRAM TO IMPLEMENT DEPTH FIRST SEARCH

FLOWCHART TO IMPLEMENT DEPTH FIRST SEARCH

 Yes No

 No

 Yes

Yes

Start

Enter the node to be found

Is node ==
goal state?

Generate a successor,E,of
the initial state

Print the output as the
same node

Check if there is
no more
successors?

α
β

Print output as failiure
Call depth-First Search with E as
the initial state

Check if the
node == goal
state?

Print the output as the path
traversed

Stop α

β

α

ALGORITHM TO IMPLEMENT DEPTH-FIRST SEARCH

Start
Step 1: Enter the node to be found
Step 2: If the initial state is a goal state, quit and return success
Step 3: Otherwise, do the following until success or failure is signaled.

(a) Generate a successor, E, of the initial state. If there are no more successors, signal
failure

(b) Call Depth-First Search with E as the initial state.
(c) If success is retuned, signal success. Otherwise continue in this loop.

Step 4: Print the output as the path traversed
Stop

Source code :

domains

 A,B,X,Y = symbol
 L = symbol*

predicates

childnode(X,Y)
child(X,Y,L)
path(X,Y,L)

clauses

childnode(a,b).
childnode(a,c).
childnode(c,d).
childnode(c,e).

path(A,B,[A|L]):-
 child(A,B,L).

child(A,B,[B|[]):-
 childnode(A,B),!.

child(A,B,[X|L1]):-
 childnode(A,X),
 child(X,B,L1).

OUTPUT

Goal : path(a,e,L)
 L= [“a”,”c”,”e”]

Program 4

 OBJECTIVES: PROGRAM TO IMPLEMENT BEST FIRST SEARCH

FLOWCHART TO IMPLEMENT BEST FIRST SEARCH

 Start

 Enter the node to be found

 Start with OPEN containing just the initial state

 Yes
 Is node== Yes Is OPEN==
 goal node? empty?
 No

 No
Pick the best node on OPEN Generate its successors

Evaluate it, add it to OPEN, and No
Record its parent

Check if the
successors are
generated

No Is new path before?
 better than the
 previous one? Yes

α

α
α

 Yes

Change the parent Update the cost of getting to this node
 and to any successors that this node
 may already have

Print the output as the path
 Traversed Stop

ALGORITHM TO IMPLEMENT BEST FIRST SEARCH

Step 1: Enter the node to be found.
Step 2: Start with OPEN containing just the initial state.
Step 3: Until a goal is found or there are no nodes left on OPEN do:

a) Pick the best node on OPEN.
b) Generate its successors.
c) For each successor do:

i. If it has not been generated before, evaluate it, add it to OPEN, and
record its parent.

ii. If it has been generated before, change the parent if this new path
is better than the previous one. In that case, update the cost of
getting to this node and to any successors that this node may
already have.

Step 4: Print the output as the path traversed.
Step 5: Exit.

Source code :

bestfirst(S,SL):-
 expand([],1(S,0/0),_,yes,SL).

expand(P,1(N,_),_,_,yes,[N|P]):-
 goal(N).

expand(P,1(N,F/G),B,T1,SV,SL1):-
 F=<B,
 (bagof(M/C,(s(N,M,C),not member(M,P)),SC),
 !,
 succlist(G,SC,TS),
 bestf(TS,F1),
 expand(P,t(N,F1/G,TS),B,T1,SV,SL1)
 ;
 SV=never
).

expand(P,t(N,F/G,[T|TS],B,T1,SV,SL1):-
 F<=B,

bestf(TS,BF),min(B,BF,B1),
expand([N|P],T,B1,T1,SV,S),
continue(P,t(N,F/G,[T1|TS],B,T1,S1,S,S1).

expand(_,t(_,_,[]),_,_,never,_):- !

expand(_,T,B,T,no,_):-
 f(T,F),
 F>B.

continue(_,_,_,_,yes,yes,SL1).

continue(P,t(N,F/G,[TI|TS]),B,T1,no,SV,SL):-
 insert(T1,TS,NTS),
 bestf(NTs,F1).

expand(P,t(N,F1/G,NTS),B,T1,SV,SL).

continue(P,t(N,F1/G,[_|TS]),B,T1,never,SV,SL1):-
 bestf(TS,F1),

 expand(P,t(N,F1/G,TS),B,T1,SV,SL1).

succlist(_,[],[]).

succlist(G0,[N/C|NCS],TS):-
 G=G0+C,
 h(N,H),
 F=G+H,
 succlist(G0,NCS,TS1),
 insert(1(N,F/G),TS1,TS).

insert(T,TS,[T1|TS]):-
 F(T,F),
 bestf(TS,F1),
 F=<F1,
 !.

insert(T,[T1|TS],[T1|TS1]):-
 insert(T,TS,TS1).

f(1(_,F/_),F).

f(t(_,F/_,_),F).

bestf([T|_],F):-
 f(T,F).

bestf([],9999).

member(X,[X|T]).

member(X,[H|T]):-
 member(X,T).

 Program 5

 OBJECTIVES Solve 8- puzzle problem using best first search.

Clauses

 move(State(middle,onbox,middle,hasnot),grasp,state(middle,onbox,middle,has)).

 move(State(P,onfloor,P,H),climb,state(P,onbox,P,H)).

move(State(P1,onfloor,P1,H),push(P1,P2),state(P2,onfloor,P2,H)).

move(state(P1,onfloor,B,H),
walk(P1,P2), % Walk from P1 to P2
state(P2,onfloor,B,H)).

% canget(State): monkey can get banana in State.

 canget(state(_,_,_,has)). % can1: Monkey already has it.

 canget(State1):- % can2: Do some work to get it
 move(State1,Move,State2), % Do something
 canget(State2). % Get it now

delete_all([],_,[]).

delete_all([X|L1],L2,Diff):-

member(X,L2),!,
delete_all(L1,L2,Diff).

delete_all([X|L1],L2,[X|Diff]):-
 delete_all(L1,L2,Diff).

% member function

member(X,[X|Tail]).

member(X,[Head|Tail]):-

 member(X,Tail).

%Concatenation function

conc([],L,L).

conc([X|L1],L2,[X|L3]):-
 conc(L1,L2,L3)

Program 6

 OBJECTIVES PROGRAM TO SOLVE ROBOT TRAVERSAL
PROBLEM USING MEANS END ANALYSIS

% plan(State,Goals,Plan,FinalState)
%The way plan is decomposed into stages by conc,the precondition plan(Preplan) is
%found in breadth-first fashion. However, the length of the rest of plan is not restricted
%and goals are achieved in depth-first style.
plan(State,Goals,Plan,FinalState):-
conc(Preplan,[Action|Postplan],Plan), %Divide plan
select(State,Goals,Goal), %Select goal
achieves(Action,Goal), %Relevant action
can(Action,Condition),
plan(State,Condition,Preplan,MidState1), %Enable action
apply(MidState1,Action,MidState2), %Apply action
plan(MidState2,Goals,Postplan,FinalState). %Achieve remainig goals

%satisfied(State,Goals):Goals are true in State
satisfied(State,[Goal|Goals]):-
member(Goal,State),
satisfied(State,Goals).
Select(State,Goals,Goal):-
Member(Goal,Goals),
Not member(Goal,State). %Goal not satisfied already

%achieves(Action,Goal): Goal is add-list of action

achieves(Action,Goal):-
adds(Action,Goals),
member(Goal,Goals).

%apply(State,Action,NewState):Action executed in state produces NewState

apply(State,Action,NewState):-
deletes(Action,DelList),
delete_all(State,DelList,State1),!,
adds(Action,AddList),
conc(AddList,State1,NewState).

% delete_all(L1,L2,Diff) if Diff is set-difference of L1 and L2

delete_all([],_,[]).

delete_all([X|L1],L2,Diff):-

member(X,L2),!,
delete_all(L1,L2,Diff).

delete_all([X|L1],L2,[X|Diff]):-
 delete_all(L1,L2,Diff).

% member function

member(X,[X|Tail]).

member(X,[Head|Tail]):-
 member(X,Tail).

%Concatenation function

conc([],L,L).

conc([X|L1],L2,[X|L3]):-
 conc(L1,L2,L3)

 Program 7

 OBJECTIVES: IMPLEMENTATION OF TRAVELING
SALESMAN PROBLEM

This is a naïve method of solving the Travelling Salesman Problem.

/* tsp(Towns, Route, Distance) is true if Route is an optimal solution
of */
/* length Distance to the Travelling Salesman Problem for the Towns,
*/
/* where the distances between towns are defined by distance/3.
*/
/* An exhaustive search is performed using the database. The distance
*/
/* is calculated incrementally for each route.
*/
/* e.g. tsp([a,b,c,d,e,f,g,h], Route, Distance)
*/

tsp(Towns, _, _):-
 retract_all(bestroute(_)),
 assert(bestroute(r([], 2147483647))),
 route(Towns, Route, Distance),
 bestroute(r(_, BestSoFar)),
 Distance < BestSoFar,
 retract(bestroute(r(_, BestSoFar))),
 assert(bestroute(r(Route, Distance))),
 fail.
tsp(_, Route, Distance):-
 retract(bestroute(r(Route, Distance))), !.

/* route([Town|OtherTowns], Route, Distance) is true if Route starts at
*/
/* Town and goes through all the OtherTowns exactly once, and Distance
*/
/* is the length of the Route (including returning to Town from the
last */
/* OtherTown) as defined by distance/3.
*/
route([First|Towns], [First|Route], Distance):-
 route_1(Towns, First, First, 0, Distance, Route).

route_1([], Last, First, Distance0, Distance, []):-
 distance(Last, First, Distance1),
 Distance is Distance0 + Distance1.
route_1(Towns0, Town0, First, Distance0, Distance, [Town|Towns]):-
 remove(Town, Towns0, Towns1),
 distance(Town0, Town, Distance1),
 Distance2 is Distance0 + Distance1,
 route_1(Towns1, Town, First, Distance2, Distance, Towns).

distance(X, Y, D):-X @< Y, !, e(X, Y, D).
distance(X, Y, D):-e(Y, X, D).

retract_all(X):-retract(X), retract_all(X).
retract_all(X).

/*
 * Data: e(From,To,Distance) where From @< To
 */
e(a,b,11). e(a,c,41). e(a,d,27). e(a,e,23). e(a,f,43). e(a,g,15).
e(a,h,20).
e(b,c,32). e(b,d,16). e(b,e,21). e(b,f,33). e(b,g, 7). e(b,h,13).
e(c,d,25). e(c,e,49). e(c,f,35). e(c,g,34). e(c,h,21).
e(d,e,26). e(d,f,18). e(d,g,14). e(d,h,19).
e(e,f,31). e(e,g,15). e(e,h,34).
e(f,g,28). e(f,h,36).
e(g,h,19).

EXTRA PROGRAMS:

 Program 1
 OBJECTIVES: PROGRAM TO IMPLEMENT BREADTH
FIRST SEARCH

 Start

 Enter the node to be found

 Create a variable called NODE-LIST and set it to
 initial state

 Is node== No Is NODE-
 goal state? LIST==

empty?
 Yes

 No
 Yes
 Check out the rule that matches E

 Apply the rule to generate a new state

Add the new state to the end of No Is new state Stop
NODE-LIST ==goal state?

 Yes

 Print the output as the

 path traversed

ALGORITHM TO IMPLEMENT BREADTH FIRST SEARCH

Step 1:Enter the node to be found

Step 2: Create a variable called NODE-LIST and set it to the initial state

Step 3: Until a goal state is found or NODE-LIST is empty do:

a) Remove the first element from NODE-LIST and call it E. If NODE-LIST was
empty,quit.

b) For each way that each rule can match the state described in E do:

 1)Apply the rule to generate a new state

 2)If the new state is goal state,quit and return this state.

 3)Otherwise ,add the new state to the end of NODE-LIST.

Step 4: Print the output as the path traversed

Step 5: Exit

Source code

domains
 X,H,N,ND = symbol
 P,L,T,Z,Z1,L1,L2,L3,PS,NP,ST,SOL= symbol*

predicates
 solve (L,L)
 extend (L,L)
 conc (X,L,L)
 breadthfirst (L,L)

clauses

 solve (S,SL):-
 breadthfirst ([[S]| Z],Z,SL).

 breadthfirst ([[N|P] | _] , _, [N|P]):-
 Goal(N).

 breadthfirst([P |PS],Z,SL):-
 extend(P,NP),
 conc(NP ,Z1, Z),
 P\==Z1,
 breathfirst (P, Z1, SL).

extend([N|P],NP):-
 Bagof([ND,N |P],(s(N,ND), notmember (ND,[N|P])) ,NP), !.

extend(P,[]).

conc([],L ,L).

conc ([X| L1],L2, [X|L3]):-
 Conc(L1 ,L2 ,L3).

member(X,[X|T]).

member(X,[H|T]):-
 member(X,T).

OUTPUT

Goal : solve([a,e],S)

S = [“a” ,”b”,”c” ,”e”]

Goal : solve ([a,h],S)

S = [“a”, “b” ,“c”, “d” ,”e” ,“f” ,”g”, “h”]

 Program 2

 OBJECTIVES: PROGRAM TO FIND OUT UNION AND
INTERSECTION OF TWO LISTS.

ALGORITHM TO FIND OUT UNION OF TWO LISTS.

Step 1. Start
Step 2. If first list is empty return second list as the union of two lists and goto step

6.
Step 3. If head of first list is not a member of second list add this element in the

union of both list produced by calling union function with and goto step 5.
Step 4. If head of first list is a member of second list call the union function for tail

of first list and second list
Step 5. Exit

ALGORITHM TO FIND OUT INTERSECTION OF TWO LISTS.

Step 1. Start
Step 2. If first list is empty return empty list as intersection of both lists.
Step 3. If head of first list is a member of second list then add the head to

the list obtained by calling intersection function with tail of first list
and second list and goto step 5.

Step 4. If head of first list is not a member of second list then call
intersection function with tail of first list and second list.

Step 5. Exit

Source code
domains
X = symbol*
Y = symbol

predicates
union(X,X,X)
inters(X,X,X)
member(Y,X)

clauses
union([],L,L).
union([H|T],L,[H|U]):-
 union(T,L,U),
 not(member(H,U)),!.
union([_|T],L,U):-
 union(T,L,U).

inters([],_,[]).
inters([H|T],L,[H|Lr]):-
 member(H,L),
 inters(T,L,Lr),!.
inters([H|T],L,Lr):-
 not(member(H,L)),
 inters(T,L,Lr).

member(H,[H|_]).
member(H,[_|L]):-
 member(H,L).

OUTPUT

Goal: union([a,b,c],[c,d,e],X)
X=[“a”,”b”,”c”,”d”,”e”]
1 solution

Goal: intersection([a,b,c],[c,d,e],X)
X=[“c”]
1 solution

 Program 3
 OBJECTIVES: PROGRAM TO CALCULATE FACTORIAL OF
A GIVEN NUMBER

ALGORITHM TO CALCULATE FACTORIAL OF A GIVEN
NUMBER

Step 1. Start
Step 2. If the number is 0 then return 1 and goto step 5.
Step 3. Call the function with a number one less than the original number
Step 4. Return product of number received in step 3 and number itself as factorial
Step 5. Exit

Source code
domains
X = integer

predicates
fact(X,X)

clauses
fact(0,1):-!.
fact(No,Fac):-
 N = No -1,
 Fact(N,F),
 Fac = No*F.

OUTPUT:

Fact(5,X)

X=120

 Program 4

 OBJECTIVES: PROGRAM TO FLATTEN A LIST

ALGORITHM TO FLATTEN A LIST

Start

STEP 1: Obtain the given list as L.

STEP 2 Let H be the Head abd T be the Tail of the list L

STEP 3: Let list be the null list then
 The resulted list is null list and cut

STEP 4: If H is head of the list and an atom,then
 Write it to the resulted list and cut.

STEP 5: Else divide H the list head into two parts H1 and T1
 And write H1 to the resulted list and repeat from step 2 for tail T1.

STEP 6: Repeat from step 2 for the tail T of the list.

STEP 7: Print the resulted list and Exit.

Stop

Source code ;
domains
 L=symbol*

predicates
 display(L)
 display1(L)

clauses
 display([]):-!.

 display([H|T]):-

 Display1(H),

 Display(T).

 dispaly1([]):-!.

 display1(H):-write(H).

 display 1([H|T]):-

 write(H).

 tab(1),

 display1(T).

OUTPUT

Goal: display(a,[b,c,d],m)

 ‘a’,’b’,’c’,’d’,’m’

 Program 5

 OBJECTIVES:PROGRAM TO SOLVE MONEY BANANA
PROBLEM

%move(State1,move,State2):making move in State1 resuklts in State2;
% a state is represented by the term:
% state (Monkey Horizontal,Monkey Vertical,Box Position,HasBanana).

Domains

 State1,State2,MH,MV,BP,HB,P1,P2=symbol
 Move=symbol*

Predicates

 move(State1,Move,State2).
 state(MH,MV,BP,HB).
 push(P1,P2).
 walk(P1,P2).
 grasp.
 climb.

Clauses

 move(State(middle,onbox,middle,hasnot),grasp,state(middle,onbox,middle,has)).

 move(State(P,onfloor,P,H),climb,state(P,onbox,P,H)).

move(State(P1,onfloor,P1,H),push(P1,P2),state(P2,onfloor,P2,H)).

move(state(P1,onfloor,B,H),
walk(P1,P2), % Walk from P1 to P2
state(P2,onfloor,B,H)).

% canget(State): monkey can get banana in State.

 canget(state(_,_,_,has)). % can1: Monkey already has it.

 canget(State1):- % can2: Do some work to get it
 move(State1,Move,State2), % Do something
 canget(State2). % Get it now

 REFRENCES:

1. PROLOG PROGRAMMING FOR AI BY: IVAN BRATKO

2. ARTIFICIAL INTELLIGENCE : ELAIN RICH & KEVIN KNIGHT

3. A MODERN APPROACH : STAURT RUSSEL &PETER NORVING

NEW IDEAS /EXPERIMENTS

Apart from university syllabus following programs are performed by students to upgrade
their knowledge in prolog programming::

1) program to find intersection of two lists.

2) program to find union of two lists.

3) program to flatten a list.

4) program to find a factorial of a number.

5) program to solve problem using breadth first search.

6) program to solve Monkey Banana Problem.

 FREQUENTLY ASKED QUESTIONS

 Q 1) What is prolog?

 Q 2) What is the structure of a prolog program?

 Q 3) What are the different data types in prolog?

 Q 4) What are the sections in the prolog program?

 Q 5) How to ask queries in prolog explain using examples?

 Q 6) Difference between rule and fact?

 Q 7)Difference between variable and constants representation in prolog?

 Q 8) What is a list? How it can be manipulated?

 Q 9)What is the logic to insert a element in a list?

 Q10)What is the logic to delete a element in a list?

 Q11) What is the logic to find the product of the elements in the given list?

 Q12) What is the logic tyo find the largest number in the given list?

 Q13)What is cut?

 Q14)What are the uses of cut?

 Q15)What are the advantages and disadvantages of cut?

 Q16)What do you mean by fail predicate?

 Q17) What are the advantages and disadvantages of fail?

 Q18) What is difference between fail predicate and cut predicate?

 Q19)What is anonymous variable and how it is represented?

 Q20)What do you mean by bagoff?

 Q21)What are bound and free variables in prolog?

 Q22)What is the logic for concatenation of two list?

 Q23)How will you check whether the list is a sublist of another list or not?

 Q24)How will you declare a list?

 Q25)Explain the difference between depth first search and breadth first search?

 Q26)What is monkey banana problem?

 Q27)What are the features of prolog?

 Q28)What are the various built in predicates in prolog?

 Q29)Difference between prolog and lisp?

 Q30)What is expert system?Also tell its characterstics?

